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Abstract 
The marine aquarium trade is a significant global industry, harvesting millions of live coral reef 
fishes annually for sale in public and private aquaria. Wild-caught fish are sourced 
predominantly from the Indo-Pacific and move through a complex and largely unregulated 
supply chain to markets in the USA and Europe. This fishery system supports livelihoods and 
coastal economies in Small Island Developing States and Less Economically Developed 
Countries in exporting countries. Conversely, top importing countries largely benefit from the 
marine aquarium trade by enriching their aquarium hobby and marine education. This diverse 
and species-rich trade is considered data-limited on a global scale, creating a barrier to 
quantifying the sustainability of this fishery to the net benefit of coral reef ecosystems. Our study 
aims to assess the potential vulnerability of marine aquarium fish species to overfishing using an 
updated and expanded productivity-susceptibility analysis (PSA). We evaluated the vulnerability 
of the top 258 marine aquarium fish species imported into the USA in 2011, the largest global 
consumer. The total volume of fishes throughout this period accounts for an estimated 92.5% of 
the annual trade volume. Vulnerability was calculated based on various productivity (life history) 
and susceptibility (harvest and trade) factors. Novel factors tailored to the unique life-history and 
fishery selectivity characteristics of the marine aquarium trade were added. Methods to 
overcome missing data for individual factors are presented, as complete data availability 
decreased with rank in trade. Additionally, we present an improved method to objectively 
categorize and visualize the comparative sustainability of species by applying a Gaussian 
mixture model clustering algorithm to PSA outputs.  The results of our PSA, at a species and 
family level, provides useful information to stakeholders and serves as a robust and accessible 
risk assessment tool to prioritize species for management based on their vulnerability score. 
  
1.   Introduction 
 
Appropriate fisheries management needs to address the productive capacity of each stock, as 
well as its susceptibility to overfishing. Without the productivity-susceptibility analysis (PSA), 
adequate management actions may be challenging to implement. Data limitations often arise 
given the significant effort required to monitor a large number of species being harvested, along 
with the multitude of biological, environmental and anthropogenic factors that can influence 
stock sizes (Hobday et al. 2007, McClanahan et al. 2023, Baillargeon et al. 2020). Fisheries that 
target marine aquarium trade (MAT) species are recognized for their diversity and often small 
harvest volumes (Rhyne et al. 2017). Due to the high diversity and low volume characteristic of 
this fishery, a majority of species in the MAT remain wild-caught (Tlusty et al. 2013). Although 
there have been recent technological advancements paving the way for aquaculture to 
supplement wild-caught fish, there remains a limited number of species where commercial 
aquaculture is viable (Tlusty, 2002). Commercial aquaculture is concentrated in western 
countries who have historically played the role of major importing nations in the trade, instead of 
supplementing fishing livelihoods with cultured production in native ranges (Tlusty, 2002). 



  
Species harvested for the MAT are particularly data-deficient as they are: (1) less voluminous in 
trade compared to food fish, (2) often harvested from remote, biodiversity hotspots throughout 
the coral triangle, (3) and remote locations limits catch reporting in a traditional framework that 
results in long term datasets (Wood 2001a; Wood 2001b;  Fujita et al. 2014; Dee et al. 2014; 
Okemwa et al. 2016; Dee et al. 2019; Baillargeon et al. 2020; Biondo and Burki 2020). A 
successful method to rapidly assess the vulnerability of a species to fishing activity within a data-
limited context is the productivity-susceptibility analysis (Hobday et al. 2007, Patrick et al. 
2009). The PSA estimates a stock’s productivity based on widely known life history traits that 
are tailored to key growth indicators and trophic niches specific to a group of fishes. To assess 
fishery and trade influences on a stock’s abundance, the PSA also scores the susceptibility of a 
fish to fishing pressure across several factors, and productivity and susceptibility are combined 
into a final vulnerability score (Hobday et al. 2007, Hobday et al. 2011). The MAT PSA 
developed by Baillargeon et al. (2020) focused on 32 species, comprising the top 20 species in 
trade along with 12 species assessed by other PSA studies. Seven productivity and five 
susceptibility factors were deemed robust across all species and were used to calculate 
vulnerability (Baillargeon et al. 2020). 
  
Rhyne et al. (2012, 2017) reported that the United States is the largest importer of marine 
aquarium fish, having imported approximately 2,300 species from over 40 countries within a 
four-year period. Similar trends in imports are observed in the UK and the European Union 
(Rhyne et al. 2017). However, it's notable that only a limited number of these species have 
undergone assessment or are covered by active management plans to evaluate their vulnerability 
to overfishing. The value chain for marine aquarium fish is markedly different from that of food 
fisheries. These species are captured, transported, sold, and maintained alive, significantly 
increasing their economic value. The value typically escalates towards the end of the supply 
chain, where the price of a fish can substantially increase by the time it reaches the supplier in 
the importing country. Within a given genus, the value of species varies considerably. For 
instance, juvenile or deep-water species, which are often challenging to capture, and visually 
appealing or colorful species, tend to be more sought after by consumers, further influencing 
their market value (Wood 2001a; Bruckner 2005; Rhyne et al. 2017). 
  
In 2019, the CITES parties agreed to conduct a review and technical workshop to help 
understand trends in the MAT and identify species at risk of overexploitation, highlighting the 
need for a robust and accessible assessment method for managers to implement at the local to 
global scale (CoP19 Inf. 99). The ease and accessibility of FishBase’s (Froese and Pauly, 2023) 
vulnerability calculation has recently been highlighted on an international scale, as it is the 
leading species-specific assessment method supporting the most recent CITES report (UNEP-
WCMC, 2022) evaluating the global MAT. However, the report lacks transparency of methods 
and data. FishBase’s current model has limitations as a resource for fishery vulnerability 



information across species, especially for reef fishes which do not conform to growth patterns 
the model is based on (Thomas et al. 2015, Cheung et al., 2005). To ensure appropriate resource 
extraction of the MAT species and sustainability of the MAT, it is critical to perform rapid 
fisheries assessments that provide accurate results and do not require extensive fisheries 
management resources. Therefore, we expanded the PSA model developed by Baillargeon et al. 
(2020) to 258 species, which represent approximately 92.5% of individuals imported into the US 
by count (Rhyne et al. 2015). We addressed the issue of data deficiency by implementing 
methods to overcome data gaps, quantified factors that are most impactful to a fish’s 
vulnerability across the 258 species and improved the specificity of the PSA framework and 
vulnerability characterization to marine aquarium fish. 
  
2.   Materials & Methods 
 
2.1 Assessing variables to include in PSA. Identifying the optimal set of factors to obtain the 
vulnerability score and mitigate uncertainties determines the effectiveness of a PSA framework.  
To achieve this, the PSA model developed by Baillargeon et al. (2020) was applied to the top 
258 MAT species imported into the US based on 2011 data (Rhyne et al. 2015, 2017). The 
feasibility and practicality of use was evaluated assessing data availability in each productivity 
and susceptibility factor being scored. When species level data was unavailable, a congener, 
closest genetic relative, or family level data was used. In the absence of data, experts on 
reproductive biology of marine ornamental fish species were consulted to provide fecundity data 
needed for this study. Model sensitivity was also tested by looking at the influence of each 
productivity and susceptibility factor on the resulting vulnerability score. Validation of the 
method developed by Baillargeon et al. (2020) resulted in changes to the productivity and 
susceptibility factors being assessed and the weighting for each factor (see Table S1 for complete 
data binning and scoring matrix). 
  
Productivity and susceptibility factors were scored for each species individually on a 1−3 
(low−high) scale, in line with Patrick et al. (2009) and Hobday et al. (2011) (see Table S1 for 
scoring matrix). Productivity is an indirect measurement of a species' ability to reproduce and 
indicates resiliency to changing environmental conditions (Baillargeon et al., 2020). Five 
productivity factors: maximum size, mean trophic level, breeding strategy, fecundity, and pelagic 
larval duration (PLD) were included in this PSA framework (Table 1).  
  
Susceptibility measures the likelihood that fishing pressures will have a negative impact on a 
species’ population (Patrick et al. 2009). Susceptibility has a reverse scale from productivity, 
where high susceptibility translates to a higher vulnerability score. Six susceptibility factors: 
geographic distribution, encounterability depth, suitability for aquarium keeping, volume in 
trade, and the life stages harvested, and cyanide were included in this PSA framework (Table 1). 
  



Validity of scientific names for species included in this study were checked against the online 
version of Eschmeyer’s Catalog of Fishes up to December 2023 (Fricke et al. 2023). Data for the 
top 258 traded species were sourced from a mix of primary literature, open-source databases and 
repositories, and aquarium hobbyists’ gray literature (Table 1). An analysis of change in 
vulnerability scores across the 32 species analyzed in Baillargeon et al., 2020 utilizing the 
present model was also conducted (Figure S1). 

Table 1: Productivity and susceptibility factors with corresponding data sources. Bold text 
indicates a factor weight of 2 in the model. 

Factor Data sources 
Productivity 

Maximum size 
Primary literature, 
Michael, S. (2005), 

FishBase 

Mean trophic level FishBase, 
Primary literature 

Breeding strategy 
FishBase, 

Breder and Rosen (1966), 
Thresher (1984) 

Fecundity 

Primary literature, 
Hobbyist forums (i.e.: 

breedersregistry.org, mbisite.org), 
FishBase 

Pelagic larval duration Primary literature 
Susceptibility 

Ecological niche/distribution 
Eschmeyer's Catalog of Fishes, 

IUCN Red List assessments, 
FishBase 

Cyanide use Aquariumtradedata.org 
Encounterability depth IUCN Red List assessments 

Aquarium suitability 

Online hobbyist databases, 
(LiveAquaria.com, Saltcorner.com, 

Reeflex.net), 
Michael, S. (2005) 

Trade volume Aquariumtradedata.org 
Life cycle stage of harvest LiveAquaria.com, BlueZooAquatics.com 

 
A phylogenetic tree with vulnerability score heatmap data was created for the 258 species list 
using the rtol, ape, and ggtree packages in R (Figure S2). Organizing the data phylogenetically 
helps to visualize vulnerability score trends across taxonomic levels. Phylogenetic data was 
sourced from the Open Tree of Life database. 
  
2.2 PSA Mathematical Framework. Productivity was calculated based on six life history 
factors (Table 1). A weighted arithmetic mean was used to calculate Productivity, where is the 
productivity score and is the factor weight. Increasing the factor weight to 2 represents the 
factor’s importance in determining the vulnerability of a species in a fishery. 
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               (Equation 1) 

Susceptibility was calculated by using a weighted mean of logarithms expressed as an 
exponential function, with base 10 raised to the power of the weighted logarithmic mean, where  
yi is the susceptibility factor score and ai is the factor weight: 
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These factors were quantified in a data-binning process where productivity and susceptibility 
scores are calculated separately then inputted into the Euclidean distance formula to output the 
vulnerability score (v).  Where p is the mean productivity score, s is the mean susceptibility 
score, and v is the vulnerability score (equation 3). Vulnerability is functionally the distance from 
the origin (1,3) of the productivity-susceptibility plot. 
 

𝑣 = 	$(𝑝 − 3)! + (𝑠 − 1)!  (Equation 3) 
  
2.3   Productivity and Susceptibility Factor Refinement 

  
2.3.1. Productivity factors 
Length at maturity and maximum age factors were removed in this analysis due to lack of 
reliable data for a majority of the 258 species being assessed. In addition, when the impact of 
each factor was examined, maximum size was closely correlated to the maximum age and length 
at maturity (R2>0.9). Maximum size was given double-weight among the productivity factors to 
account for its representation of numerous factors. 
  
The factor breeding strategy, was adjusted to be dependent on fecundity in cases of high 
disparity between breeding strategy and fecundity values to ensure accuracy (Table S2). Because 
of this scaling, score weight for this factor was set to 1 instead of 2 to avoid double-counting 
within the model. All other factors and scoring bins remained unchanged from Baillargeon et al. 
2020. 
  
2.3.2   Susceptibility factors 
  
Ecological niche and geographic distribution were combined into a single factor in this model, to 
account for the interaction of species range and habitat specificity impacting overall 
susceptibility to fishing effort. Geographic distribution (categorized as large or small) was 



determined by referring to published IUCN Red List Assessments (IUCN 2022) and 
Eschmeyer’s Catalog of Fishes (Fricke et al. 2023). This was then cross-referenced with habitat 
specificity information from FishBase (Froese and Pauly, 2023) which was categorized as wide 
or narrow. Data from ecological niche and geographic distribution were then binned into a 
single-factor score following Rabinowitz (1981) methodology (Figure 1). For example, species 
with small geographic ranges and narrow habitat specificity were classified as most susceptible, 
with a score of 3. 

 
 
Figure 1: Scoring matrix for susceptibility factor Ecological niche/distribution based on 
Seven Forms of Rarity (Rabinowitz, 1981). Ecological niche/distribution scores were 
calculated based on their geographic range determined by the California Academy of Science 
and IUCN databases, combined with habitat specificity from FishBase. Factor score is indicated 
in the upper left corner of each categorization bin. 
  
Encounterability depth was obtained from the depth range of each species indicated in the IUCN 
Red List database (IUCN 2022) and scored based on the maximum depth, instead of the average 
depth (Baillargeon et al., 2020) where a species can be observed. 

Aquarium suitability was scored by converting descriptive care levels estimated by hobbyist 
sources (Table 1) into a 5-point numerical scale (least difficult = 1 to most difficult = 5). These 
hobbyist databases provided various phrases used to describe care difficulty. Terms such as 
"Easy" and "Beginner" represented the low points of the scale (least challenging). Phrases such 
as "Moderate," "Average," and "Intermediate" represented the middle points of the scale 
(intermediate). Lastly, the highest (most difficult) part of the scale was represented by phrases 
such as "Expert," "Advanced," "Professional," and "Not suitable for home aquaria." In the 
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majority of cases, multiple hobbyist databases had information on a particular species, and care 
level was averaged across these sources. This 5-point scale was converted to the 3-category PSA 
framework by assigning 1 for scores <2.5 (Less difficult), 2 for scores between 2.5 to 3.5 
(Moderate difficulty), and 3 for scores >3.5 (More difficult). This gives a quantifiable range to 
narrative data, in comparison to the “easy, medium, hard” categorization from the same data 
sources in Baillargeon et al. 2020. 

When fishes are harvested at a rate faster than their reproduction rate, overexploitation occurs 
(Aubone, 2004). Thus, species with a high volume in trade and high fecundity may be considered 
less susceptible to overexploitation compared to species with low to moderate volume in trade 
and low fecundity. To capture this in the revised PSA model, the factor score for trade volume 
was scaled based on the species’ productivity score. First, annual trade volume was binned into 
three categories: <3,000 individuals; 3,000 to 15,000 individuals; and >15,000 individuals. Data 
bins are based on the 1st and 3rd quartiles from the spread of volume in trade data. Since 
productivity scores ranged from 2.30 to 0.77 in this analysis, if a species was highly productive 
(i.e. 2.30 to 2.00), trade volume was considered low and scored as a 1, regardless of the import 
volume. Species with moderate productivity (i.e. 2.00 to 1.90) and intermediate to high trade 
volume (3,000 to >15,000 individuals) were scored 2, while species with low trade volume or 
<3,000 were scored 1. Finally, species with low productivity (1.90 to 0.77) and moderate to high 
import volume (3,000 to >15,000) were scored 3, or at 2 if the number of species traded was 
<3,000 at this productivity level. This factor was weighted at two due to the importance of trade 
volume on fishery vulnerability (Table 1, Table S1).   
  
The life cycle stage at harvest (LCSH) was added as a susceptibility factor due to its impact on 
local population dynamics. Harvesting adults negatively impacts the reproductive potential of a 
stock, including its ability to withstand and recover from fishing pressure (Begg and 
Marteinsdottir 2003; Law 2007). Fishing juveniles may reduce the population of breeding adults 
in the future and affect population renewal (Wood 2001a). As such, species harvested in both 
juvenile and adult stages were considered more susceptible to overfishing (score of 3) than 
species harvested only as juveniles (score of 1) or adults (score of 2). This scoring framework 
was developed based on the idea that removing all life stages significantly reduces potential 
recruitment, as does removing adult broodstock, whereas removing non-breeding juveniles has 
less direct impact on population size (Table S3).  LCSH on a per species basis was confirmed by 
referencing size classes of fish sold by well-known online retailers (Liveaquaria.com, 
Bluezooaquatics.com). In the absence of available data, an expert in aquarium fish rearing and 
trade was consulted. 
  
2.4 Sensitivity Analysis and Model Comparison. A model sensitivity analysis was done to test 
the impacts of individual factor scores, weighting, and combined effects across multiple factors 
for both productivity and susceptibility. Multiple factor scores were manipulated, individually 
and then in succession, while all other factors were set at a neutral score of 2 (Figure S3). For 



productivity, the following grouped factor scores were independently manipulated from 1 (low) 
to 3 (high): fecundity (weighted), breeding strategy, and pelagic larval duration. Similarly, a 
group of susceptibility factors (aquarium suitability, LCSH, and encounterability depth) were 
manipulated from 3 (high) to 1 (low). This analysis compared the change in vulnerability score 
across three weighted and unweighted factors. This three-factor manipulation included an equal 
number of weighted (1) and unweighted factors (2) across productivity and susceptibility factors. 
An expanded model sensitivity analysis was conducted to reveal trends across single weighted 
and unweighted factors, with all other factors set at a neutral score of 2 (Table S4). Single 
productivity factors manipulated include maximum size and trophic level, while susceptibility 
factors manipulated include ecological niche + distribution and aquarium suitability. 

PSA species outcomes were directly compared with the widely available and open-access 
repositories and assessments for such a large volume of species: IUCN Red List and FishBase. 
The conservation status of the 258 species in this study was retrieved from the IUCN Red List 
website (IUCN 2022) and categorically compared to sustainability categorization of PSA 
vulnerability scores based on our clustering methods. Vulnerability scores were scraped from 
FishBase.org for all 258 species using R. 

2.5 Gaussian Mixture Modeling to Classify Species Vulnerability. A semi-supervised 
machine learning algorithm was implemented to classify all 258 species evaluated into three 
distinct vulnerability clusters: “most vulnerable”, “moderately vulnerable”, and “least 
vulnerable”. Multivariate, finite Gaussian mixture models and K-means clustering algorithms 
were evaluated for best model fit using the open-source R Mclust package and stats package, 
respectively. K-means clustering groups species into circular shaped clusters where the borders 
are defined by minimizing the distance from the centroid center to radius edge based on two-
coordinate points. The GMM model was chosen over the K-means for its ability to cluster points 
along 3 axes based on productivity, susceptibility, and vulnerability values with unequal volume 
and shape (Table S5). 

The silhouette coefficient was evaluated to determine the optimal number of clusters for the 
expanded dataset. Log-likelihood and Akaike Information Criterion (AIC) model comparison led 
to the selection of the Mclust VVI finite GMM model. The main distinction between this new 
GMM and the former GMM used in the previous study (Baillargeon et al. 2020) is clustering 
based on productivity, susceptibility, and vulnerability scores instead of only along the x-y axis. 
Further, this GMM model framework is set to cluster diagonally from the origin while allowing 
the volume and shape of each cluster ellipse to differ instead of holding size and shape constant 
like k-means or other GMM clustering models. Full model code is available here: 
https://github.com/gbaillargeon/PSA-Gaussian-Mixture-Model.git. 

 

 

https://github.com/gbaillargeon/PSA-Gaussian-Mixture-Model.git


3.   Results 
Table 2: Species, Family, Productivity (P), Susceptibility (S), Vulnerability (V), Rank in 
Trade, IUCN status,  Availability as captive-bred for 10 of the most and least vulnerable 
species assessed. Rank in trade of 1 represents the most imported fish into the US in 2011  
(Rhyne et al. 2015). Captive bred availability of species is based on Pouil et al. 2020 with the 
categories: has been successfully bred in captivity, scare, moderate, or common availability. 
IUCN status in descending order of vulnerability: Endangered (EN), Vulnerable (VU), Least 
concern (LC), and Not Threatened (NT). 

Species Family P S V 
Rank in 
trade 

IUCN 
Status 

Availability as 
captive-bred (Pouil 

et al. 2020) 
  Top 10 most vulnerable species       
Chiloscyllium punctatum Hemiscyllidae 1.29 1.61 1.82 251 NT Moderate 
Echidna nebulosa Muraenidae 1.57 1.63 1.56 70 LC - 
Pterapogon kauderni Apogonidae 2.00 2.15 1.52 9 EN Common 
Rhinomuraena quaesita Muraenidae 1.57 1.49 1.51 277 LC - 
Gomphosus varius Labridae 2.00 2.05 1.45 168 LC - 
Exallias brevis Blenniidae 2.43 2.32 1.44 95 LC - 
Ostorhinchus parvulus Apogonidae 2.43 2.32 1.44 170 LC - 
Diodon hystrix Diodontidae 1.86 1.76 1.37 105 LC - 
Diodon holocanthus Diodontidae 1.86 1.76 1.37 160 LC - 
Zoramia leptacanthus Apogonidae 2.14 2.05 1.36 104 LC Scarce 
  Top 10 least vulnerable species       
Chrysiptera unimaculata Pomacentridae 2.86 1.13 0.19 203 LC - 
Chromis opercularis Pomacentridae 2.71 1.00 0.29 176 LC - 
Amblypomacentrus 
breviceps Pomacentridae 2.71 1.00 0.29 224 LC - 

Neoglyphidodon nigroris Pomacentridae 2.71 1.08 0.30 37 LC 
Has been bred in 

captivity 

Pomacentrus amboinensis Pomacentridae 2.86 1.28 0.31 132 LC 
Has been bred in 

captivity 
Neoglyphidodon oxyodon Pomacentridae 2.71 1.13 0.31 49 LC - 
Dischistodus prosopotaenia Pomacentridae 2.71 1.17 0.33 261 LC - 
Neoglyphidodon melas Pomacentridae 2.71 1.26 0.39 33 LC Scarce 

Amblyglyphidodon curacao Pomacentridae 2.71 1.26 0.39 92 LC 
Has been bred in 

captivity 
Amblyglyphidodon 
ternatensis Pomacentridae 2.71 1.26 0.39 107 VU 

Has been bred in 
captivity 

 

 
Across the 258 species, productivity scores ranged from 1.29–3.00, and susceptibility scores 
ranged from 1.00–2.32, resulting in a vulnerability range of 0.19–1.82 (Table 2). Significant 
variation in average factor scores between high and low vulnerability scoring species was 



observed (ANOVA, p<0.05). For productivity factors, maximum size and fecundity represented 
the largest difference in average values of fish in the top 10 most and least vulnerable clusters 
(Figure 2).  

 
Figure 2: Comparative analysis of average productivity and susceptibility factor scores. 
Average factor scores (± standard deviation) across five productivity and six susceptibility 
factors for most vulnerable species (n=10), least vulnerable species (n=10), and all species 
(n=258).  
 
For susceptibility factors, volume in trade and life stage at harvest showed the greatest difference 
between top 10 most and least vulnerable species (Figure 2). Ecological niche + distribution, 
cyanide use, and pelagic larval duration had the least change in average score when comparing 
the highest and lowest scoring species in terms of vulnerability, indicating these factors had the 
least influence on the model output (Figure 2).  If we assess the most traded species by looking at 
the top 25% of species in the trade by import quantity, this corresponds to volume in trade rank 
1-64 where 15,000 individuals or more are traded annually. Within this commonly traded group, 
57.8% of species fall into the ‘least vulnerable’ category, with three of the top ten lowest scoring 
species (Neoglyphidodon nigroris, Neoglyphidodon oxyodon and Neoglyphidodon melas) in the 
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PSA being represented. Only four ‘most vulnerable’ species are traded at this volume, 
accounting for about 10% of the total species considered most vulnerable by our PSA. 
 

 
Figure 3: Percentage breakdown for species level data availability for data-limited productivity 
factors (pelagic larval duration, fecundity, and breeding strategy).  
For all species assessed (n=258), data for factor scoring was drawn from either the species, family, genus, 
or suborder level based on data availability for each species. For the factor fecundity, experts on 
reproductive biology of marine ornamental fish species were consulted to when data was missing at the 
species or family level. This is displayed within the pie chart (%) with the number of individuals per 
category demarcated in the legend of each factor.  
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Every factor evaluated in this PSA had data available for all species, except for Breeding 
Strategy, Pelagic Larval Duration, and Fecundity. For breeding strategy 75% of fish evaluated 
have species level data, pelagic larval duration has 51.9%, and fecundity only have 27% species-
specific data (Figure 3). Fecundity has the largest combination of all data types, where breeding 
strategy was largely determined by species and family level estimates exclusively. 

 
 Figure 4: Boxplot of vulnerability scores for the top families by volume in the trade (n=11), 
ordered from most to least vulnerable. 
 
A total of 36 families were assessed, and one-third of those families contained only a single 
traded species. Notably, 7 families (22% of all families evaluated), account for 69% of all 
species evaluated in this study. The damselfishes (Family: Pomacentridae), the largest family of 
fish in the analysis, have the lowest average vulnerability of the top 7 families (v = 0.53 ± 0.14, 
n=60), with the three least vulnerable fish (Chrysiptera unimaculata, Chromis opercularis, and 
Amblypomacentrus breviceps) in the analysis coming from this family (v = 0.39). The 
butterflyfishes (Family: Chaetodontidae) are the most vulnerable of these families (v = 1.08 ± 
0.28, n=10) (Figure 4). 
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Figure 5: Model sensitivity analysis showing the impact of changing factor scores on the 
vulnerability score. Species in this analysis are represented by green points (n=258), and the 
hypothetical example fish is represented by a yellow point. [A] Shows a hypothetical fish with a 
low productivity score, falling into the most vulnerable category [B] Shows a hypothetical fish 
with high productivity having a much lower vulnerability score. [C] Shows a hypothetical fish 
having a similarly high vulnerability score as [A] in the most vulnerable category but due to a 
high susceptibility score, whereas [D] shows that a low susceptibility score translates to a low 
vulnerability score, similar to [B]. 
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The model sensitivity analysis highlights that productivity has a greater effect on the 
vulnerability score when manipulating a group of factors as opposed to susceptibility. All factors 
aside from those being manipulated were set at a “neutral score” of 2. All scores set to neutral 
produce a vulnerability score of 1.55 for the example species. Shifting a group of productivity 
factors (fecundity, breeding strategy, and PLD) from 1 to 3 results in a vulnerability score 
decrease of 0.88, while a scoring shift of 3 to 1 for a group of susceptibility factors (aquarium 
suitability, encounterability depth, and LCSH) results in a 0.73 decrease in vulnerability score 
(Figure 5). 
  
In the expanded sensitivity analysis, manipulation of single factors revealed a marginal tendency 
for susceptibility to have a greater effect on the vulnerability score opposed to productivity. 
Shifting a single weighted productivity factor (maximum size) from 1 to 3, and weighted 
susceptibility factor (ecological niche + distribution) from 3 to 1 resulted in a vulnerability score 
decrease of 0.36 and 0.39, respectively. Shifting of single unweighted productivity and 
susceptibility factors (trophic level and aquarium suitability) using the same parameters resulted 
in a vulnerability score decrease of 0.18 and 0.2, respectively (Figure S3). 

 
Figure 6: Productivity-Susceptibility Analysis with Gaussian Mixture Model Clustering 
designating vulnerability categories for all species assessed (n=258). This is a semi-



supervised model (silhouette coefficient = 0.43) for grouping individual species into three 
vulnerability clusters based on productivity, susceptibility, and vulnerability scores. Color 
gradient represents vulnerability scores with low to high vulnerability scores corresponding with 
light to dark gradation diagonally from the origin. The size of data points indicate number of 
individuals with that vulnerability score (see legend).  
  
Regardless of the clustering algorithm, three clusters were determined to be the optimal fit for 
our data by their silhouette coefficients (GMM = 0.43, k-means = 0.457). Slight differences in 
total number of species per group were observed between the various models (Table S5). The 
strength of the GMM over k-means clustering is evident when observing the clustering pattern 
and variation in productivity, susceptibility, and vulnerability between the two methods (Figure 
S4).  When comparing Mclust GMM models, the log-likelihood and BIC values indicated that 
the “VVI” clustering method is the best fit for our data (Table S5; BIC = 332.738, Log-
likelihood = 221.9). This resulted in three vulnerability clusters that have significantly different 
centroids (ANOVA, p<0.01). 
  
Each cluster represents three distinct vulnerability risk groups shaped by the range of 
productivity and susceptibility scores within that group. The first group is considered least 
vulnerable due to their characteristic high productivity and low susceptibility scores (HPLS), 
followed by a moderately vulnerable group (MPMS), and finally, the most vulnerable group that 
is defined by low productivity and high susceptibility (LPHS) (Figure 6).  The GMM model 
shows the HPLS cluster contains 127 species, the MPMS cluster contains 93 species, and the 
LPHS cluster contains 38 species.  The range of vulnerability scores across the clusters are: 0.19-
0.73 for HPLS, 0.744-1.11 for MPMS, and 0.87-1.82 for LPHS, the most vulnerable group. The 
HPLS and MPMS clusters of the GMM model represent fish species that are low priority for 
further assessment, accounting for 85% of species evaluated. The remaining 38 species (15%) 
are ranked as vulnerable and are those in need of assessment and management. 
  
The IUCN Red List is widely used as a tool for conservation actions and priorities (IUCN 2022). 
A majority of the top 258 MAT species are classified as non-threatened in the Red List, with 239 
Least Concern species and one Near Threatened species, Chiloscyllium punctatum (IUCN 2022). 
Three species, namely, Amblyglyphidodon ternatensis, Gobiodon axillaris and Chrysiptera 
hemicyanea are Vulnerable in the Red List due to declining coral cover globally (IUCN 2002). 
Only one MAT species, Pterapogon kauderni, is Endangered in the Red List due to its small 
area of occupancy, severe fragmentation, and continuing decline due to the aquarium trade 
(Allen et al. 2007). We note the significant aquaculture production of Pterapogon kauderni 
(Table 2, Rhyne et al. 2017). 
  
When IUCN Red List results are compared to the PSA, key differences can be noted including 
the number of factors used, the PSA’s application for data-limited species, and its ability to 



measure the threat posed by the MAT on species populations. The Red List process uses five 
criteria to determine a species’ probability of extinction compared to the PSA method that has 11 
Productivity and Susceptibility factors for scoring vulnerability to overfishing. The PSA for the 
258 MAT species included nine that were considered IUCN Data Deficient and five species that 
have not yet been evaluated in the Red List (IUCN 2022). In the PSA results, the top 10 most 
vulnerable species in the MAT included Chiloscyllium punctatum and Pterapogon kauderni, 
which have Near Threatened and Endangered conservation status in the IUCN Red List, 
respectively. The remaining 80% of the top 10 most vulnerable species in the PSA were 
classified as Least Concern in the Red List. Both methods showed that damselfishes (Family: 
Pomacentridae) are least vulnerable among the top 258 species assessed. Among the species 
analyzed in the PSA, the 10 species with the lowest vulnerability scores are classified as Least 
Concern, except for Amblyglyphidodon ternatensis. This species is categorized as Vulnerable, 
primarily due to the global decline in coral cover (IUCN 2022). 

 
Figure 7: Histogram of vulnerability score distribution (n=10 data bins) from FishBase (A) 
and the present PSA (B) for all species assessed (n=258). 
 
A pair-wise comparison of the FishBase vulnerability data and this PSA show no strong 
correlation or linear relationship between the two scores for the top 258 fish in the trade 
(Pearson’s correlation = 0.42, R2 = 0.176). The FishBase model (Cheung et al., 2005) is much 
less sensitive to species-specific characteristics for marine aquarium fish, as 173 species are 
assessed with a vulnerability of “10”, the lowest possible score in that model. Observing the 
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spread of vulnerability scores between the two models, it is evident the FishBase vulnerability 
scores are severely left skewed whereas the 2024 PSA scores show a normal distribution when 
breaking the data into 10 equal vulnerability bins (Figure 7). 
 
Table 3. Comparison of seven key species vulnerability scores and corresponding 
vulnerability categories between our PSA and the FishBase Vulnerability model. Species 
are ordered by low to high FishBase Vulnerability Score. 

Species PSA 
Vulnerability 

GMM Cluster 
Vulnerability 

FishBase 
Vulnerability 

Score 

FishBase 
Vulnerability 

Category 
Chromis viridis 0.67 Least 10 Low 
Sphaeramia nematoptera 1.2 Moderately 10 Low 
Pterapogon kauderni 1.52 Most 19 Low 
Paracanthurus hepatus 1.35 Moderately 21 Low 
Dascyllus aruanus 0.67 Least 26 Low to moderate 
Echidna nebulosa 1.56 Most 60 High 
Pomacanthus imperator 1.02 Moderately 68 High to very high 

 
In total, there is 26% overlap between FishBase and this PSA vulnerability index across all 
species. Comparing the top 15 most vulnerable species ranked by each model, Chiloscyllium 
punctatum, Diodon hystrix, Echidna nebulosa, and Rhinomuraena quaesita are the only 
overlapping species. Comparing seven key species in the trade allows for a further examination 
of agreement and divergence between these two models (Table 3). The models severely 
disagreed on the vulnerability score for four (Pterapogon kaudernii, Paracanthurus hepatus, 
Dascyllus aruanus, Pomacanthus imperator) of these seven well-studied species. The 
damselfish, Dascyllus aruanus has opposite vulnerability scores comparing the PSA and 
FishBase vulnerability scores, respectively (V=0.67, 26) where the main distinction here is the 
Bangaii cardinalfish (Pterapogon kaudernii) scores lower in fishbase vulnerability than the 
damselfish, while being in the PSA top 10 highest scoring vulnerability species (V=1.52, 19) 
(Table 3). There is agreement on Chromis viridis, and the aforementioned Echidna nebulosa. 
  
4.  Discussion 
 
We present a PSA tuned for data-deficient species as a robust and accessible tool to predict the 
vulnerability of fish in the MAT from a holistic and global perspective. This will allow 
stakeholders to prioritize fish species categorized as vulnerable due to the direct impacts of the 
marine aquarium fisher, for further study and management consideration. The goal of the PSA is 
to provide a list of species that are at risk of overexploitation by the trade, specifically 
identifying the factors that are driving their high vulnerability to inform appropriate 
management. This PSA represents an expanded species assessment from the framework 
developed by Baillargeon et al. 2020, and increased the number of species considered from 32 to 



258, representing the top imported MAT species into the US. It is an adjusted methodology to 
handle more data-deficient species and serves as a predictive tool to estimate the relative 
vulnerability of a new fish species entering or becoming more popular in the trade. This 
framework also identifies fish that should continue to be traded in high volumes or should be the 
focus of aquaculture production. This PSA acknowledges that local assessment, including site-
specific environmental and cultural indicators, should be executed when data are available to 
provide the most accurate risk assessment and inform strategic management plans. 
  
Sustainable species in the MAT can be defined as those of low susceptibility and high 
productivity, where a species at risk of overharvesting would display high susceptibility and/or 
low productivity. This PSA framework does not serve to classify fish into explicit and fixed 
sustainability categories, but rather a tool to accurately identify species that have a host of 
characteristics making them resilient or vulnerable to fishing in the MAT. The combination of 
both where a fish falls on the PSA x-y graph, and in which vulnerability cluster, determines the 
type and urgency of management plans, respectively. Generally, a PSA assessment can be read 
based on how far from the origin a species falls. For instance, the top left quadrant indicates a 
highly susceptible but highly productive species where management would need to be focused 
on gear limitations as their high productivity will buffer effects of increased fishing pressure. In 
contrast, the top right quadrant represents a fish with high susceptibility and low productivity, 
where a greater management focus on protecting broodstock and limiting fishing would be 
required given the biological demands of that species for them to be sustainable in the trade. A 
prime example of this is Echidna nebulosa (V=1.56) and Exallias brevis (V=1.44), which are 
both within the top 100 species in trade and are within the top 10 highest vulnerability scores for 
this PSA, consequently in the most vulnerable category. These two species have opposing 
productivity and susceptibility factors driving their high vulnerability, resulting in different 
management implications, yet both fall within the most vulnerable cluster. 
  
The majority of fish evaluated by Baillargeon et al. (2020) had low susceptibility and high 
productivity scores, falling in the ‘sustainable’ category, a product of the most traded species 
being highly fecund with short lifespans (average p = 2.28). Even though we increased our 
sample size by nearly an order of magnitude, we see similar values in the present analysis 
(average p = 2.53). However, the vulnerability cluster is dependent on those species included in 
the analysis and is a relative, not absolute, value. The 2020 model showed 93.3% of species 
evaluated were least vulnerable (HPLS) or moderately vulnerable (MPMS), while this revised 
model with an expanded dataset declined to 85%. The species in this analysis which demonstrate 
high productivity and low susceptibility, are the best wild-caught species to be harvested at 
significant volumes for the MAT (V=0.19-0.73 for HPLS, and V=0.744-1.11 for MPMS). 
  
In this PSA, productivity and susceptibility scores fell within a narrow range (1.29–2.86), 
including multiple groups of overlapping points within a single cluster. When expanding the 



PSA from 32 to 258 species, the general distribution of points mirrors the pattern seen in 
Baillargeon et al. 2020, with 3 distinct ellipse clusters representing the optimal number of 
vulnerability categories. A key difference in the expanded dataset was the distinct formation of 
vertical bands of points, indicating large groups of species with the same productivity score. 
Susceptibility scores are responsible for vertically separating groups of species with similar 
productivity values, indicative of shared life-history traits, into varying vulnerability score 
ranges. Although susceptibility was built into the model using a geometric logarithmic mean to 
avoid heavily skewing the vulnerability score, it remains the most influential factor in 
determining which vulnerability cluster a species will fall in. For instance, 26 species, or ~10% 
of all species assessed in this analysis scored 2.29 for productivity, which is slightly below the 
median productivity score of 2.57. Of those species, nine fell in the most vulnerable category and 
16 fell in the moderately vulnerable cluster. The distinction between the vulnerability cluster 
directly corresponds to when susceptibility scores are above or below a 1.9 score. With the 
moderately vulnerable cluster ranging from 1.3-1.8, and most vulnerable ranging from 1.9-2.15 
for susceptibility score. For those scoring higher in susceptibility, shifting from one vulnerability 
cluster to the next indicates a clear change in how a species would be monitored and managed 
for a given productivity band. 
 
Several species vulnerability scores and rank in trade exemplify why this risk assessment is a 
useful tool to assess current sustainability and prevent future declines due to fishing activity.  In 
the least vulnerable cluster, Chrysiptera unimaculata (V = 0.19) comes close to the lowest 
possible score, but at the same time, is not well represented in the trade; however, PSA predicts 
that this species would respond well to increased demand from consumers (rank 190 of 258). 
Chiloscyllium punctatum (V = 1.82 where maximum V=2.82) is the highest scoring species on 
this list but is also not well represented in trade (252 of the 258 species).  In this case, due to 
their low productivity a consideration of a quota limit may be a next management step to prevent 
future declines with changes in demand or fishing effort. However, P. kauderni is third most 
vulnerable and is 9th in the trade. This vulnerability of wild populations led the US federal 
government to initiate a 4D ruling, unfortunately ignoring the significant numbers of this species 
being produced in aquaculture in Thailand (Rhyne et al. 2017). The PSA framework enables 
managers to suggest minimally disruptive management methods to decrease risk based on 
individual productivity and susceptibility scores to avoid implementing broad, uniform 
management policies that are not tailored to the fishery. 
  
Within this dataset, there were numerous species with limited or unavailable data entirely. This 
was most often positively correlated with volume in trade. In total, 25% of families comprise a 
majority of the trade which is why this study took a genus and family level estimation approach 
for data-deficient factors, as well as identifying trends that hold true at the family and genus 
level. Half of the productivity factors (Pelagic larval duration, fecundity, and breeding strategy) 
were data deficient. A step-wise system of estimating data deficient factors by nearest common 



relative minimizes errors in factor score estimation, an improvement from exclusively family 
level generalizations.  Dynamic yet data-rich susceptibility factors have drastically improved the 
accuracy of the vulnerability score, while scaling down productivity factors have reduced error 
propagation. 
  
This improved PSA methodology has two advantages over the IUCN Red List process, making it 
suitable for determining appropriate management, research, and conservation actions for MAT 
species. First, this PSA method is best matched to assess the vulnerability of wild-caught fishes 
in the MAT due to the specialized factor selection to match both the unique life histories and 
measurable fishing activity for this data-limited system. We were able to calculate a vulnerability 
score and rank MAT species despite data limitations, including species that were Data Deficient 
in the Red List. Second, this PSA method provides a ranking for a species based on their 
vulnerability to overfishing in the MAT. Although crucial, the direct impact of the MAT on local 
coral reef ecosystems is often unavailable (Ochavillo et al. 2004).  Within the list of Least 
Concern species in the Red List, further prioritization through the PSA was possible in light of 
the species’ vulnerability in the MAT. 
  
When looking at the types of threats considered by each method, the Red List evaluates the 
probability of extinction of a species with consideration of all potential threats to its global 
population. In contrast, the PSA provides a vulnerability score associated with a specific threat, 
overfishing due to the global trade. A resulting rank for each species assessed in this PSA 
provides a tool for prioritizing species for research and conservation inclusive of threats from the 
MAT itself, which is not achieved automatically after examining the conservation status of these 
species in the IUCN Red List. A threatened category in the IUCN Red List does not necessarily 
equate to high vulnerability to overfishing in the MAT, exemplified by our results. Except for the 
Endangered cardinalfish, Pterapogon kauderni, the three other MAT species were placed in the 
Vulnerable category due to declining coral cover associated with climate change on the Red List. 
Our improved PSA methodology and resulting ranking is apt for resource managers, policy-
makers and researchers looking for information on species vulnerable to the MAT. 

Similarly, the nuance of the PSA assessment can be confirmed when comparing our results to 
that of FishBase Vulnerability outputs (Froese and Pauly, 2023), an automated tool that requires 
little to no information to be inputted on the user end to obtain the vulnerability score of nearly 
any fish. The FishBase model is reliant almost entirely on estimated life history parameters 
rooted in the von-bertalanffy growth equation (Cheung et al., 2005). For a group of diverse, data-
deficient species like those in the MAT, this results in either a homogenization of all fish without 
taking into account any susceptibility factors; or, the fish that do score higher are inflated based 
on one growth characteristic.  Most notably, the Bangaii Cardinal fish (Pterapogon kaudernii), 
the only species demarcated as Endangered under the US Endangered Species Act and IUCN 
Red List, is ranked as low vulnerability (V=19) under the FishBase model. This scoring is 
directly contradicted by the universal agreement that this fish is endangered due to the wild-



caught aquarium fishery, given its unique life history traits of mouth brooding few young in an 
endemic range while being in high demand due to their appeal to hobbyists, thus making 
intensive trade unsustainable for this species. Even the fast growing, very fecund damselfish 
Dascyllus aruanus (V=26), scores higher than a known endangered species which is in direct 
opposition to the known, well-documented life histories and fishing records of both these fish.  

The only consistent alignment between the two frameworks is for fish that behave as traditional 
food fish in terms of both growth pattern and susceptibility to fishing pressure, like the 
Snowflake moray eel (Echidna nebulosa, V=60). To further demonstrate this point, a popular 
angelfish, P. imperator, has consistently fallen into the moderate risk category across multiple 
PSA frameworks (Dee et al., 2019; Okewma et al., 2016, Baillargeon et al., 2020). Yet according 
to the FishBase model it scores as highly vulnerable (V=68) across, in line with the dogfish 
(Squalus acanthias) score (V=68) showing a huge discrepancy in scoring for marine aquarium 
fish under this framework.  Therefore, a model that is not tailored both in what factors it assesses 
and the mathematical framework (data binning and scoring), data-deficient estimation, and value 
traits toward aquarium fish instead of food fish fails to be a useful tool to assess and prioritize 
species at risk. 
  
The cumulative results of our expanded PSA show that the majority of fish in the trade can be 
considered sustainable. Key traits of a resilient fish in the marine aquarium fishery: Small 
maximum size, broadcast spawner or high parental investment demersal spawner with high 
fecundity, wide habitat specificity and large geographic range, are only harvested as juveniles, 
and are considered easy to care for in a home aquarium. These are often factors that can be 
assessed on a species or genus level for species in the trade, in lieu of traditional fishery data 
which is largely unavailable or lacking in granularity. For example, the combination of MAT 
specific productivity factors replaces the reliance on growth metrics derived from length-weight 
relationships or spawning stock biomass surveys which are commonly drawn upon to assess the 
status of a fished stock. If a fish does not meet these exact criteria that does not equate to it being 
highly vulnerable to overfishing. Instead, the PSA analyzes how well its life history 
characteristics (productivity factors) are in balance with existing fishing pressure (susceptibility 
factors). Managers can then read the PSA graph (Figure 6) as four quadrants that require unique 
management based on if risk is being driven by productivity or susceptibility factors and can 
tailor management plans to mitigate risk based on this. 
  
Given that this data-limited system operates in some of the most biodiverse coral reefs in the 
Indo-pacific, which are already facing an onslaught of environmental challenges, there is a need 
to ensure the marine aquarium industry is providing a positive net benefit to the coral reef socio-
ecological system inclusive of reef and community health. The PSA is the best suited data-
limited assessment tool to identify the level and type of risk that fishing poses to current and 
future species that are heavily traded. Its flexible yet robust framework incorporates 11 data 
points, far more than either FishBase or IUCN, into a single suite of vulnerability indicators 



(productivity, susceptibility, vulnerability score and cluster) that enable accurate and simple 
prioritization of species for management. 
  

4.   Conclusions 
  
A key benefit of implementing a PSA is the ability to modify its base framework based on 
locality of assessment, number of species assessed, and type of fishery. The updates made to the 
previously published framework for MAT (Baillargeon et al. 2020) ensure that species’ 
vulnerability calculations avoid overestimation of scores through setting more realistic criteria 
for scoring, elimination of extremely data-limited factors, and productivity-scaling (i.e. volume 
in trade). The availability of sustainability information for the most popular MAT species will 
lead to more informed decisions among stakeholders such as fishers, retailers, and consumers 
when choosing species to harvest, sell, and purchase. A further exploration of this methodology 
would be to incorporate site-specific environmental and biological covariates alongside 
economic and cultural indicators across a subset of localized assessments, to strengthen the 
predictive ability of the model and better aid in developing management plans that are feasible 
and appropriate based on PSA results. 
  
In summary, this PSA provides the most comprehensive methods to quantitatively assess the 
sustainability of fish in the MAT, even in cases where data is limited or unavailable for one or 
more factors. It serves as a useful tool in strengthening other, more qualitative species 
evaluations. We recommend that the 38 fish in the most vulnerable cluster are prioritized for 
independent fishery assessment at a national and regional scale to best understand the threat the 
marine aquarium trade poses to their populations, and how to implement management policies to 
prevent declines. Further, these species are of high priority for supplementing wild-caught with 
aquacultured fish. The PSA method can be used in data-limited situations to support IUCN Red 
List Assessments. The potential impact of this extensive list of vulnerability scores for the top 
258 species traded should be viewed as a powerful tool for national and international regulatory 
bodies, such as CITES or IUCN, to adapt into their risk assessment methodologies when robust 
datasets are frequently unavailable. 
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